Enumeration of Generalized BCI Lambda-terms

نویسندگان

  • Olivier Bodini
  • Danièle Gardy
  • Bernhard Gittenberger
  • Alice Jacquot
چکیده

We investigate the asymptotic number of elements of size n in a particular class of closed lambda-terms (so-called BCI(p)-terms) which are generalizations of lambdaterms related to axiom systems of combinatory logic. By deriving a differential equation for the generating function of the counting sequence we obtain a recurrence relation which can be solved asymptotically. We derive differential equations for the generating functions of the counting sequences of other more general classes of terms as well: the class of BCK(p)-terms and that of closed lambda-terms. Using elementary arguments we obtain upper and lower estimates for the number of closed lambda-terms of size n. Moreover, a recurrence relation is derived which allows an efficient computation of the counting sequence. BCK(p)-terms are discussed briefly. ∗Supported by ANR Magnum project (France) †Supported by ANR Boole project (France). This author’s work was partially carried out during her sabbatical leave at the Institute for Discrete Mathematics and Geometry, TU Wien, Austria. ‡Supported by FWF grant SFB F50-03 and ÖAD, grant F04/2012. the electronic journal of combinatorics 20(4) (2013), #P30 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerating Well-Typed Terms Generically

We use generic programming techniques to generate well-typed lambda terms. We encode well-typed terms by generalized algebraic datatypes (GADTs) and existential types. The Spine approach (Hinze et al. 2006; Hinze and Löh 2006) to generic programming supports GADTs, but it does not support the definition of generic producers for existentials. We describe how to extend the Spine approach to suppo...

متن کامل

Asymptotics and random sampling for BCI and BCK lambda terms

This paper presents a bijection between combinatorial maps and a class of enriched trees, corresponding to a class of expression trees in some logical systems (constrained lambda terms). Starting from two alternative definitions of combinatorial maps: the classical definition by gluing halfedges, and a definition by non-ambiguous depth-first traversal, we derive non-trivial asymptotic expansion...

متن کامل

Generalized Lambda Distribution and its Properties

‎Generalized Lambda Distribution is an extension of Tukey's lambda distribution‎, ‎that is very flexible in modeling information and statistical data‎. ‎In this paper‎, ‎We introduced two parameterization of this distribution‎. ‎Then We estimate parameters by moment matching‎, ‎percentile‎, ‎starship and maximum likelihood methods and compare two parameterization and parameter estimation method...

متن کامل

ON ($epsilon, epsilon vee q$)-FUZZY IDEALS OF BCI-ALGEBRAS

The aim of this paper is to introduce the notions of ($epsilon, epsilon vee q$)-fuzzy p-ideals, ($epsilon, epsilon vee q$)-fuzzy q-ideals and ($epsilon, epsilon vee q$)-fuzzy a-ideals in BCIalgebras and to investigate some of their properties. Several characterizationtheorems for these generalized fuzzy ideals are proved and the relationshipamong these generalized fuzzy ideals of BCI-algebras i...

متن کامل

A Flexible Skew-Generalized Normal Distribution

 In this paper, we consider a flexible skew-generalized normal distribution. This distribution is denoted by $FSGN(/lambda _1, /lambda _2 /theta)$. It contains the normal, skew-normal (Azzalini, 1985), skew generalized normal (Arellano-Valle et al., 2004) and skew flexible-normal (Gomez et al., 2011) distributions as special cases. Some important properties of this distribution are establi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013